Section 5.2
Systems of Equations: Solve by Substitution

THE SUBSTITUTION METHOD

Using the second example from section 5.1:

\[y = 2x - 1 \quad y = \frac{2}{3}x + 2 \]

because \[y = y \]
then \[2x - 1 = \frac{2}{3}x + 2 \]

When we pair these two expressions, we get rid of \(y \) and are left with one \(x \) on each side. We then combine “like terms” and solve for \(x \).

Solving a rational equation (an equation with fractions) is easier if we eliminate the fractions and turn them into integers. We do this by multiplying each term of the equation by 3 (because the 3 denominator is what makes it a fraction).

\[(3)(2x) - (3)(1) = (3)\left(\frac{2}{3}x\right) + (3)(2) \]

The result is that we exchange canceling the 3 denominator for a larger equation—of the same value—overall. The new equation is now:

\[6x - 3 = 2x + 6 \]

Combine like terms
\[6x - 2x = 6 + 3 \]
\[4x = 9 \]
\[x = \frac{9}{4} = 2.25 \]

The graphical solution in section 5.1 estimated \(x = 2.3 \), but \(x = 2.25 \) is accurate and exact.

To find the \(y \) value of the equation, go back to either of the two original equations, substitute the value of \(x \), and get the value for \(y \):

\[y = 2(2.25) - 1 \]
\[y = 4.5 - 1 \]
\[y = 3.5 \]

The point where the lines cross is (2.25, 3.5). Any system of equations can be solved by substitution.

Example: Solve the system by substitution

\[y = 2x + 7 \quad y = 2x + 4 \]

Because \(y = y \), substitute

\[2x + 7 = 2x + 4 \]
\[2x - 2x = -7 + 4 \]
\[0 = -3 \]

Because 0 is not equal to –3, the lines will not meet and there is no solution to the system: The lines are parallel. If the solution had been a true statement, like –3 = –3, then there is only one solution (all the points are at the intersection) and both lines are the same (identity property).
Example: Solve the system by substitution

\[
\begin{align*}
2x - 3y &= 10 \\
x + y &= 2
\end{align*}
\]

To substitute, first solve one of the equations in terms of \(x\) or \(y\). Solving for \(x\), the second equation becomes:

\[x = -y + 2\]

Substituting \((-y + 2)\) for \(x\) into the first equation:

\[2(-y + 2) - 3y = 10\]

Doing this gives us an equation without \(x\).

Solving for \(y\):

\[
\begin{align*}
2(-y + 2) - 3y &= 10 \\
-2y + 4 - 3y &= 10 \\
-5y + 4 &= 10 - 4 \\
-5y &= 6 \\
y &= \frac{6}{-5} = -1.2
\end{align*}
\]

Because \(x = -y + 2\) and \(y = -1.2\),

by substitution, then

\[
\begin{align*}
x &= -(-1.2) + 2 \\
x &= 1.2 + 2 \\
x &= 3.2
\end{align*}
\]

The solution to the system is point \((3.2, -1.2)\)

Practice:

Solve each system by substitution.

1. \[
\begin{align*}
2y &= 3x + 5 \\
y &= x + 3
\end{align*}
\]

9. \[
\begin{align*}
y &= 3x + 1 \\
y &= -x + 6
\end{align*}
\]

17. \[
\begin{align*}
2y &= 2x + 10 \\
y &= -5x + 11
\end{align*}
\]

2. \[
\begin{align*}
y &= 4x - 5 \\
x &= 2y - 3 \\
x + 2y + 6 &= 0 \\
3x + y + 5 &= 0
\end{align*}
\]

10. \[
\begin{align*}
x &= 2y - 3 \\
y &= 2x + 3
\end{align*}
\]

18. \[
\begin{align*}
3y &= 4x - 4 \\
x + y + 6 &= 0
\end{align*}
\]

3. \[
\begin{align*}
3y &= 5x \\
y &= -5 \\
x + y &= -3
\end{align*}
\]

11. \[
\begin{align*}
y &= 2x + 3 \\
y &= 6
\end{align*}
\]

19. \[
\begin{align*}
6y &= x + 9 \\
y &= 7
\end{align*}
\]

4. \[
\begin{align*}
y &= -x - 7 \\
x + y &= -3 \\
x &= y + 7 \\
x + 4y &= -12
\end{align*}
\]

12. \[
\begin{align*}
7y &= x - 10 \\
x &= y + 13 \\
3x + y &= 4 \\
3x + y &= 9
\end{align*}
\]

13. \[
\begin{align*}
5y &= x + 1 \\
x &= y + 13 \\
x &= y + 13 \\
3x + y &= 4
\end{align*}
\]

14. \[
\begin{align*}
x &= y + 13 \\
x &= y + 13 \\
x &= y + 13
\end{align*}
\]

15. \[
\begin{align*}
-2x &= -y - 6 \\
y &= x - 5 \\
y &= x - 5
\end{align*}
\]

16. \[
\begin{align*}
3x + 2y + 5 &= 0 \\
y + 2x + 9 &= 0 \\
3y + x + 5 &= 0
\end{align*}
\]

17. \[
\begin{align*}
2y &= 2x + 10 \\
y &= -5x + 11
\end{align*}
\]

18. \[
\begin{align*}
3y &= 4x - 4 \\
x + y + 6 &= 0
\end{align*}
\]

19. \[
\begin{align*}
6y &= x + 9 \\
y &= 7
\end{align*}
\]

20. \[
\begin{align*}
2x + 3y &= 5
\end{align*}
\]

21. \[
\begin{align*}
3x + y &= 9
\end{align*}
\]

22. \[
\begin{align*}
3y &= 5x + 7 \\
-3x + 9y + 3 &= 0
\end{align*}
\]

23. \[
\begin{align*}
-4x &= -2y - 5 \\
y &= 3x - 2
\end{align*}
\]

24. \[
\begin{align*}
2x + 3y + 7 &= 0 \\
3y + x + 5 &= 0
\end{align*}
\]